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The flow field of a diffusion flame attached to a thick-rim injector between two 
coflowing streams of fuel and oxidiser is analysed in the Burke-Schumann limit 
of infinitely fast reaction rate. The length of the recirculation region immediately 
behind the injector and the velocity of the recirculating fluid are proportional to 
the shear stresses of the reactant streams on the wall of the injector for a range 
of rim thicknesses, and the structure of the flow in the wake depends then on 
three main non-dimensional parameters, measuring the gas thermal expansion due 
to the chemical heat release, the air-to-fuel stoichiometric ratio of the reaction, and 
the air-to-fuel ratio of wall shear stresses. The recirculation region shortens with 
increasing heat release, and the position of the flame in this region depends on the 
other two parameters. An asymptotic analysis is carried out for very exothermic 
reactions, showing that the region of high temperature around the flame is confined 
by neatly defined boundaries and the hot fluid moves like a high-velocity jet under 
a favourable self-induced pressure gradient. The immediate wake is surrounded by 
a triple-deck region where the interacting flow leads to an adverse pressure gradient 
and a reduced shear stress upstream of the injector rim for sufficiently exothermic 
reactions. Separation of the boundary layers on the wall of the injector, however, 
seems to be postponed to very large values of the gas thermal expansion. 

1. Introduction 
A diffusion flame between a gaseous fuel jet and a stagnant or coflowing gaseous 

oxidiser is the central element of many combustion devices. The flame is said to 
be stabilized or attached to the injector if combustion begins immediately upon the 
reactants coming into contact and the heat transfer toward the injector is important 
to the process, whereas it is said to be lifted if a region long compared with the 
size of the jet’s cross-section exists between the injector and the base of the flame. 
The structure of the flow around an attached flame and the limits within which the 
flame remains attached are obviously of great practical importance and have been 
very much studied. Thus the region at the base of an attached flame of methane or 
hydrogen in air has been experimentally investigated by Robson & Wilson (1969), 
Kawamura & Asato (1975), Kawamura, Asato & Mazaki (1980), and Takahashi 
et al. (1984), among others, for a variety of fuel jet shapes and exhaust conditions, 
including cases with a coflowing air stream around a thin-walled injector. The velocity, 
temperature and reactants concentration fields were measured, as well as the position 
of the flame, the heat release, and the heat fluxes from the flame to the injector and 
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to the gas downstream. Models of the lifting mechanism have been proposed based 
on the idea put forward by Gaydon & Wolf'hard (1953) that, even for an attached 
flame, molecular mixing of the reactants between the injector and the base of the 
flame leads to a small volume of combustible mixture where a premixed flame front 
can propagate toward the injector against the flow. A steady attached flame will exist 
if the propagation velocity of this front can balance the velocity of the flow. Then 
a fraction of the heat released at the front is transported downstream, serving as an 
ignition source for the rest of the flame. If such a balance is not possible in the 
vicinity of the injector rim, the flame will either lift to an equilibrium position far 
above the injector or disappear altogether. Importantly, while the flow at the base of 
a lifted flame is typically turbulent, that in the attachment region is always laminar, 
even if the jet becomes turbulent further downstream. 

The immediate wake of a thick injector rim between two coflowing reactant streams 
provides the moderate strain rates necessary for a diffusion flame to exist, and also, in 
the vicinity of the rear stagnation point, the low velocities necessary for a premixed 
flame to propagate without being blown out by the flow. In addition, depending 
on the conditions of the reactant streams and the position of the flame, the reverse 
flow in the recirculation region may also provide an alternative mechanism of flame 
stabilization that does not depend on the propagation of a premixed flame front. 
The effect of the injector port thickness was first investigated by Vranos, Taback 
& Shipman (1968) for the flame between coflowing jets of hydrogen and air, who 
found that the range of fuel and air velocities over which the flame remains attached 
is very much enlarged when that thickness is increased. They reported a variety of 
flame behaviours, including a second type of lift-off in which the flame is locally 
extinguished at some distance downstream of the injector leaving a residual attached 
flame, and related the existence of these flames, and of the enlarged stability domain, 
to the recirculating eddies behind the injector rim and to the high diffusivity of the 
hydrogen. The same trends were observed by Yoon, Donbar & Driscoll (1994) in 
more recent experiments on supersonic coflowing jets of hydrogen and air. These 
authors found that the propagating front at the beginning of their attached flames 
sits in the outer part of the shear layer between the air and the recirculating fluid, 
where the flow velocity is larger than the propagation velocity of the corresponding 
stoichiometric premixed flame, and attributed the existence of a steady front under 
these conditions to a local excess of enthalpy in the recirculating flow, due to the 
high diffusion flux of hydrogen toward the partially burnt recirculating fluid. In their 
experiments with methane-air flames, Takahashi & Schmoll (1990) observed a third 
type of flame lift-off, characteristic of thick injector rims, whereby the upstream end of 
the flame becomes oscillatory immediately before lifting. They showed experimentally 
that the oscillations are associated with the end of the flame moving in and out of a 
recirculation eddy in the wake of the injector rim. 

In this paper numerical and asymptotic techniques are used to analyse some of 
these features in their simplest form. For this purpose we consider an injector of 
thickness large compared with the quenching distance of the flame, which is the size 
of the region round the tip of a thin-walled injector affected by heat conduction 
from an attached flame, but still sufficiently small for the lateral displacements of 
the reactant streams to be negligible. In this range of thicknesses the oncoming 
streams are characterized only by the values of the shear stresses on the injector 
wall immediately upstream of its end, and both the length of the recirculation region 
and the velocity of the recirculating fluid scale with these values. In addition, since 
the emphasis is on the description of the flow field, the chemistry is simplified by 



Flow field of an attached Jame 391 

assuming that the flame is an infinitely thin reaction sheet. This corresponds to 
the Burke-Schumann limit of infinitely fast reactions in which only two parameters 
are left to characterize the combustion, namely the air-to-fuel mass stoichiometric 
ratio and the ratio of heat release to thermal enthalpy. The numerical and asymp- 
totic results presented below show that the second of these parameters affects very 
significantly the flow, making the recirculation region shorter than for the corre- 
sponding isothermal flow and eventually leading to a region of favourable pressure 
gradients downstream of the recirculation bubble, where a jet-like velocity profile 
develops in the hot fluid around the flame. The position of the flame in the wake 
depends mainly on the stoichiometric ratio (that, by this means, also affects the 
flow) and on the ratio of air to fuel shear stresses. The first of these parameters is 
determined by the nature of the reactants and their concentrations in the oncom- 
ing streams, whereas the second depends on the configuration of the injector and 
the flow rates of the reactants. Though the assumption of infinitely fast reaction 
is not appropriate to determine the stability limits, because it always leads to an 
attached flame, a number of qualitative conclusions on the likelihood of the dif- 
ferent types of flame lift-off are drawn by examining the distributions of velocity 
and strain rate on the flame and their dependence on the parameters mentioned 
before. 

2. Formulation 
The flow in the attachment region of the flame is nearly planar, independently of 

the shape of the injector, owing to the small size of this region compared to the size 
of the injector cross-section. As a model of this flow we consider two parallel streams 
of density p,, temperature T,, and velocities U, and U ,  much smaller than the 
sound speed in either fluid, carrying mass fractions Y,, and Yo, of fuel and oxygen, 
respectively, and separated by a wall of thickness 2h. The two streams can either 
extend to infinity or be confined to finite-width channels formed by the separating 
wall and two other plane parallel walls, or an outer wall and a symmetry plane. The 
two streams come into contact at the end of the separating wall, reacting in a flame 
that releases an energy Q per unit mass of fuel consumed. The chemical reaction 
is supposed to be infinitely fast, so the flame is a continuous, infinitely thin sheet 
separating the two reactants, which only coexist in the interior of the flame with 
infinitely small concentrations (see, e.g., Williams 1985). 

Counterflow heat conduction toward the separating wall is important in small 
regions of size Re-'/26 about its edges, where the full Navier-Stokes equations should 
be solved to describe the flow. Here, using for definiteness the conditions of the fuel 
stream, 6 is the thickness of the fuel boundary layer at the end of the separating 
wall, or the width of the fuel channel in the case of a developed, parabolic flow (in 
which case U, and U, are the mean velocities of the streams), Re = p,U,6/pU, is the 
Reynolds number, which will be assumed to be large, and ,urn is the viscosity coefficient 
at temperature T,. In what follows a h >> Re-'I26 is assumed. Then the balance of 
convection, with a velocity of order U,h/6 << U, when the separating wall is much 
thinner than the boundary layers or the channel width, and cross-stream diffusion 
over a thickness of order h determines the characteristic length 1 = Re 6 (h /6)3  of the 
near-wake region directly affected by the finite thickness of the wall, which will be 
the main region of concern here. Since 1 >> h for h >> Re-'/26, the boundary layer 
approximation can be used to describe the flow in this region. 
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Assuming that the Lewis numbers of the fuel and the oxygen are equal to unity, 
the non-dimensional energy and species conservation equations are 

L ( T )  = qw , L(Y,) = -w , L(Yo)  = -Sw , (2.1) 

where w(Y,, Yo, 7') is the reaction rate scaled with h2/pmYF,, q = QY,,/c,T, is the 
non-dimensional heat of reaction, S, the stoichiometric ratio, is the mass of oxygen 
mixture needed to burn unit mass of fuel mixture, and L = pu.V-(l/Pr)d/ay(pa/ay), 
with u = (u, v )  and V = (a/ax,  d / d y ) ,  is the transport operator in the boundary layer 
approximation. Here x is the streamwise distance from the end of the wall, y is the 
transverse distance from the centre of the wall toward the oxygen side, u and v are 
the corresponding velocity components, and Pr is the Prandtl number, assumed to be 
constant. The variables (x ,  y ,  u, v , p ,  p ,  T ,  Y,, Yo, p), where p is the pressure variation 
from the ambient or background value RgpmTm, are scaled with their characteristic 
values 

respectively, where A,, = -(au/ay)(x = OW, y = -h), i.e. in the fuel stream immediately 
ahead of the trailing edge. 

As can be seen by linearly combining equations (2.1), the mixture fraction and the 
excess of enthalpy, 

(2.3) 
SY, - Yo + 1 

1 + S  
4 and H = T - 1 + y(Y, + Yo - l ) ,  with y = ~ 

1 + S '  
Z =  

are transported as passive scalars [L(Z)  = L ( H )  = 01, and they take the values 
Z = H = 0 in the oxygen stream and Z = 1, H = 0 in the fuel stream. With these 
boundary conditions H = 0 everywhere in the boundary layer approximation. 

Adding the supplementary relation 

YFY0 = 0 , (2.4) 

which is the limiting form of each of equations (2.1) for infinitely fast reaction rate (i.e. 
w = 0 to leading order; the two reactants do not coexist), determines the temperature 
and reactant concentrations in terms of the mixture fraction : 

where 2, = 1 / ( 1  + S )  and the flame sheet (where Y, = Yo = 0)  coincides with the 
unknown surface Z = Z,. On this surface the temperature takes its maximum value, 
equal to the adiabatic flame temperature T, = 1 + y .  

For sufficiently small values of h, the problem in the wake region, which is sketched 
in figure 1, reduces to determining the distributions of Z ,  the velocity and the pressure 
using (2.5) and the equations 

v ( p u )  = 0 , 
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FIGURE 1. Definition sketch. (a) Pressure and velocity along the x-axis in the vicinity of the solid. 
(b)  Velocity profiles at x = 0 (piecewise linear), 6.5 x lop4, 0.2, 0.4, 1.5, and 2. (c )  Streamlines for 
a constant-density fluid. Plotted are = 0, fO.O1, f0.02, f0.03, f0.04 (in the recirculation region 
only), and f0.05, fO.1, f0.2, f0.3 and f0.4. 

p T = 1 ,  p = T " ,  (2.9) 

x = o :  u = o  for - l < y < l  (2.10) 

(2.11) 

Here, the boundary conditions at x = 0 and for y + fco state the matching of the 
wake with the bases of the oncoming streams ahead and on the sides. The parameter 
a is the ratio of the shears at the bases of the air and fuel streams. In the equation of 
state pressure changes have been neglected, which amounts to leaving out acoustics, 
as well as differences in molecular masses of the reactants (which might not be 
acceptable for mixtures of hydrogen, for which the assumption of a Lewis number 
equal to the unity is also inappropriate). The viscosity has been supposed to be the 
same for the two fluids and to depend potentially on the temperature, with 0 < CJ < 1 
in (2.9). 

The conditions (2.1 1) of zero displacement of the velocity profiles above and below 
the wake determine the pressure distribution and the overall lateral shift of the wake. 

u = a ( y - 1 ) ,  Z = O  for y > l  

u = - ( y + l ) ,  Z = l  for y < - 1 ,  

I 
{ 

y + c o :  u = a ( y - l ) + o ( l ) ,  z = o ,  
y + - c o :  u = - ( y + l ) + o ( l ) ,  z = 1 .  
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These conditions hold for sufficiently small values of h. Thus, for unconfined streams, 
a displacement of order h would lead to a velocity perturbation of order U,h/l in 
the outer flow, and to a pressure perturbation of order pmU:h/l, which is much 
larger than the dynamic pressure of the flow in the wake, of order pm(UFh/6)2 ,  if 
h << Re-'I46. Similarly (2.11) hold for a confined stream when h << Rep2l76; see 
Smith (1982) for details. 

In addition, however small h may be, the release of the no-slip condition at the 
end of the separating wall and the gas thermal expansion due to the combustion lead 
to a viscous-inviscid interaction region around the end of the wall. In the case of 
unconfined streams this region is a triple deck of length Re1I46 where the pressure 
perturbations generated in the uniform streams by the evolution of the viscous layer 
are sufficiently large to affect the flow in a lower deck of thickness Re-'I46 both 
upstream and downstream of the end of the wall (Stewartson 1969; Messiter 1970). 
In the case of confined, developed streams, the length of the interaction region is 
Re1I76, the thickness of its lower deck is Rec2I76, and the pressure variations are 
due to the curvature of the streamlines in the bulk of the channel (Smith 1982). 
The assumption above, that h << Re-'I46 for unconfined streams or h << for 
confined streams, implies that the near wake is much smaller than the lower deck of 
the interaction region and is embedded in it. Then, in the absence of boundary layer 
separation, which apparently does not occur in many situations of practical interest, 
the effect of the interaction region on the near wake is to provide an overall scale 
factor, determined by the precise value of I,,, which is different from its value at a 
distance of order Re'I46 or Re'I76 upstream. 

In what follows the problem (2.5)-(2.11) will be numerically solved for different 
values of the parameters y, Z,, a, CJ and P r  by means of a finite difference method that 
allows for regions of reverse flow, and the asymptotic limit y >> 1 of very exothermic 
reactions will be analysed. 

3. Results 
Figures 2 and 3 show some streamlines and isotherms of the flow for CJ = 0, 

P r  = 1, and two different values of the exothermicity y, the stoichiometric ratio S, 
and the ratio of oxygen-to-fuel shear a, which are representative of the range of 
results obtained. The thick curves give the position of the flame. The wall extends 
from -1 to +1 on the vertical axis. A region of reverse flow appears behind the wall 
in all the cases, which for a = 1 (cases a to d )  is approximately centred (the flow for 
a = S = 1 is perfectly symmetric; see figure 1 for an example) and, except in case 
( d )  (S = 8, y = 6), has two contrarure-rotating eddies. For a = 0.2 (cases e to h)  the 
region of reverse flow is shorter and less symmetric, having only a smaller clockwise 
rotating eddy on the side of the slow stream. The length of the region of reverse 
flow decreases with increasing y (notice the tenfold magnification of the horizontal 
scales of the figures with y = 6 relative to those with y = 1) and, for a = 1, decreases 
faster for larger values of S, which seems to be an effect of the additional asymmetry 
induced by the lateral displacement of the flame. This length decreases even faster 
when the increase of the transport coefficients with temperature is taken into account 
(CJ > 0 in (2.9)). The distance from the wall to the farthest point of reverse flow 
is given in figure 7 below as a function of y for different values of S and CJ. The 
isotherms in figure 3 are nearly parallel everywhere except in the immediate vicinity 
of the wall and, when S is high (cases c, d, g and h), the temperature decays faster 
toward the upper (air) stream than toward the lower (fuel) stream. 
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The flame always starts at one of the edges of the wall in the present approximation, 
except in the strictly symmetric case mentioned before, and proceeds to the low- 
velocity wake unless S is very large. For a = 1 the flame always enters one of 
the eddies, to an extent that depends on S. Thus it reaches the region of negative 
velocities (toward the wall) for S = 2 (cases a and b), whereas for S = 8 (cases c 
and d )  more oxygen is needed and the flame shifts toward the air stream, sitting in 
the upper part of the eddy where the velocity is positive. This situation changes for 
a = 0.2. Then the flame with S = 2 (cases e and f )  starts at the lower (fuel) edge 
of the wall and never enters the recirculating eddy, having only a short region of 
negative velocities, whereas with S = 8 (cases g and h )  it crosses the eddy through 
the region of negative velocities. The importance of these differences in connection 
with the possible extinction of the flame will be discussed in $5. 

The effect of the buoyancy in the region of concern is measured by the Froude 
number Fr = pu,l,,/p,gh, if the two streams move vertically and have the same 
density. This effect may be important when the reaction is sufficiently exothermic. 
Numerical solutions of the problem with a term (1 - p ) / F r  added to the right-hand 
side of (2.7) (corresponding to upward moving streams) show that the buoyancy 
shortens the recirculation region, specially on the side of the flow containing the 
flame, which is the more sensitive. Among other things, this selective shortening may 



396 F. J.  Higuera and A. Lifi6n 
2 ,  

-2 1 I 
0 0.1 0.2 0.3 

I 
0 0.1 0.2 0.3 

,. 

-2 I 
0 0.1 0.2 0.3 

2 ,  

Y I 

-2 
0 0.1 0.2 0.3 

" I  

0 0.1 0.2 0.3 

- 
0 0.1 0.2 0.3 

X 

-2 
0 0.1 0.2 0.3 

I 
0 0.1 0.2 0.3 

X 

FIGURE 3. Isotherms for (r = 0, P r  = 1 and the same values of (a, S ,  y) as figure 2. Five equispaced 
contours between T = 1 and T = T, are shown, with T, = 2 for the left-hand column and T, = 7 
for the right-hand column. 

change the origin of the recirculating fluid. Thus, in all the cases displayed in figure 2, 
the fluid recirculating on both sides of the wake comes from the oxygen stream and 
has already crossed the flame at some downstream position, whereas on the contrary, 
for sufficiently small Froude numbers, the fluid recirculating in the oxygen side comes 
from the fuel stream and crosses the flame only after reversing the sense of its motion 
for a second time. 

Some pressure distributions are given in figure 4. The pressure gradient is always 
adverse in the bulk of the recirculation region, pushing the recirculating fluid toward 
the wall against the viscous shear stresses of the outer streams. This avoids the 
premature termination of the recirculation region, which is not permitted by the 
conditions (2.1 1) of zero displacement until the viscosity has smoothed out the 
velocity profiles or the gas expansion due to the heat release has generated sufficient 
volume to fill the available space. Further downstream the pressure keeps growing if 
y is below a certain critical value yc,  dependent on the other parameters, or attains 
a maximum somewhere behind the recirculation region if y is above yc. It is also 
worth noticing that the pressure is a decreasing function of x in a very tiny region 
immediately behind the wall, not clearly visible in figure 4 but that can be seen in 
figure l(a). 

The flow for small values of x consists of a recirculation region separated from 
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FIGURE 4. Pressure distributions for P r  = c( = 1, S = 2 and 8, and y = (1, 2, 3, 4, 5, 6), from upper 
to lower curve in each family. Solid: t~ = 0; dashed: c = 1. 

the outer uniform shear flows by two viscous shear layers issuing at the edges of 
the wall. Transport effects are negligible in the outer flows and in the recirculation 
region. In this last region the mixture fraction takes a uniform value Zb, determined 
by the flow at larger distances downstream from the wall, and the motion of the fluid 
is induced by the entrainment of the shear layers. In terms of the stream function y ,  
with pu = a y / a y  and pv = -dy /dx ,  the solution in these layers is of the form y = 
f [x2I3fl(q) + x f 2 ( q )  + ~ ~ / ~ f 3 ( q )  + . . .] and Z = Zl(q) + x ’ / ~ Z ~ ( ~ )  + x ~ / ~ Z ~ ( V )  + . . ., 
where q = ( fy  - l ) / ~ ’ / ~  and the upper (resp. lower) signs correspond to the upper 
(lower) layer. The leading terms f l (q)  and Zl(q) are the solution of a Goldstein (1930) 
self-similar problem, consisting of the momentum and mixture fraction conservation 
equations (the primes meaning differentiation with respect to q )  

( 2 - q ) ’  + prflz; = 0 , I 
with the boundary conditions 

f; = O  , 2 1  =Zb for q -+ -a , (3.2) 

f l  = aq2/2+o(1) , z1 = o for q + co (3.34 
and 

in the upper layer, or 

f l  =q2/2+o(1) , 2 1  = 1 for q +a (3.3b) 

in the lower layer, and T(Z1) given by (2.5). 
Since the fluxes in the shear layers are proportional to x2I3, the stream function 

in the recirculation region must be of the form y = x ~ / ~ F ( ~ )  + O(x), and the 
corresponding velocities lead to a pressure variation p =   AX^/^ + ., which is too 
small to affect the flow in the shear layers to leading order. A pressure decreasing with 
x is required for conservation of the total head on the streamline of the recirculating 
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FIGURE 5. Self-similar velocity (upper part) and temperature (lower part) profiles for CT = 0, 
P r  = S = CI = 1, and five values of y :  (a) y = 0 ;  (b)  y = 1; (c) y = 4; ( d )  y = 6 ;  (e )  y = 10. 

flow that ends at the wall and separates the fluid ingested by each shear layer. The 
momentum equation (2.7) with p = P b  = p ( z b )  becomes a second-order ordinary 
differential equation for the recirculating flow whose solution is 

where yo and d are integration constants representing, respectively, the height of the 
dividing streamline and the ratio of the vorticity to the stream function. This ratio 
is a constant in the present solution, being determined by the flow in the bulk of the 
recirculation region. The values of A and yo can be obtained from the conditions 
F (  1) = -fu and F(-1) = f l ,  expressing the matching of the recirculation region with 
the shear layers. Here fu  and f l  are the values of fl(-co) from the solutions of 
(3.1)-( 3.3) in the upper and lower layers, respectively. 

Once the leading-order solution is known, f 2 ( q )  and f 3 ( q )  can be found by solving 
linear equations with the boundary conditions f 2  - fF’(f1)q and f 3  - fF”(fl)q2/2 
for q -+ -00, and (f2,f3 + A/a)  or (f2 , f3  + A )  decaying exponentially to zero for 
q --+ co. In particular, f 3  reflects the influence of the pressure variation on the 
shear layers, whereas this pressure variation leads to lateral velocities : ( A / c I ) x ’ / ~  
and in the outer flows of oxygen and fuel, respectively. The values of the 
constants Zb and d can in principle be extracted from the numerical solution of the 
full problem. Thus, for CI = 1 and y = 0 the flow is symmetric and Zb = 1/2, whereas 
d = 3.9, from graphs of co/y near the solid. 

The flow far downstream of the wall can also be described in a simple form, 
accounting for the change of sign of the pressure force at y = yc.  The solution for 
large values of x does not depend on the thickness of the wall and, as described 
by Hakkinen & Rott (1965) for a constant-density fluid, it consists of a self-similar 
viscous shear layer between two regions of uniform vorticity, with a pressure gradient 
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such that these regions are not displaced by the presence of the viscous layer. For 
small values of y (in particular for y = 0) an adverse pressure gradient appears 
to balance the acceleration by viscous forces of the fluid near the solid subsequent 
to the release of the no-slip condition at x = 0, which would displace the outer 
streams inward. On the other hand, this displacement would be outward for large 
values of y, because the gas thermal expansion offsets the viscous acceleration, and 
therefore a favourable pressure gradient appears. The solution in the viscous layer 
is y = x2I3fH,(qHR),  Z = Z,,(qHR), p = Cx2I3,  with qHR = Y / x ’ / ~  and fHR(qH,) and 
Z,,(qHR) satisfying (3.1), with a term 2C/3 added to the right-hand side of the first 
equation, and the boundary conditions 

Sample values of yc (at which C = 0) from the solution of (3.1) and (3.5) for 
CI = P r  = 1 and S = (1,2,4,8) are yc = (1.665, 1.617, 1.496, 1.358) when c = 0, and 
yc = (1.241, 1.214, 1.142, 1.052) when CJ = 1. Some velocity and temperature profiles 
are shown in figure 5. As can be seen, the favourable pressure gradient for y > yc 
has a strong effect on the light fluid surrounding the flame, leading to a local velocity 
maximum for sufficiently large values of y. 

The solution of (2.5)-(2.11) describes the flow behind the wall up to distances of 
order (8/Re2/7h)3 or (8/Re1/4h)3, for confined or unconfined flows respectively, in 
the present non-dimensional variables. Lateral displacements of the velocity profiles 
become acceptable at these distances, leading to the interaction regions mentioned in 
the previous section. Contrary to the case of a constant-density fluid first analysed 
by Stewartson (1969) and Messiter (1970) for an infinitely thin plate and by Vatsa, 
Werle & Verdon (1981, 1982) for plates of finite thickness, the displacements due to 
the thermal expansion will be outward when y > yc (because a favourable pressure 
gradient was necessary to confine the flow nearer to the wall) and will induce adverse 
pressure gradients in the oncoming streams ahead of the edge of the wall. These 
gradients will reduce the skin friction seen by the near wake and determining the 
scales (2.2) of this region from its unperturbed value. Conceivably, the induced 
adverse pressure gradients could lead to separation on the wall for sufficiently large 
gas expansions, invalidating the previous results. Here the flow in the triple-deck 
interaction region of unconfined streams is briefly discussed, in an attempt to estimate 
a range of gas expansions over which separation does not occur. Referring the 
reader to the literature for more detailed accounts (e.g. Smith 1982), we notice that 
appropriate scaling factors for the variables ( x ,  y ,  u, u, p )  in the lower deck are 

which take the place of the corresponding factors (2.2) used before. Here A,m = 

- ( d ~ / d y ) ~ = ~ -  ahead of the interaction region, which differs from 1, in (2.2). Notice 
also that the wall appears as infinitely thin in the scale of this region. The distances, 
velocities and pressure variations scaled with the factors (3.6) will be denoted with a 
tilde. These variables still satisfy equations (2.6)-(2.9) on the two sides and downstream 
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FIGURE 6. (a) Pressure (solid) and negative of the displacement (dashed), and (b)  shear at the wall, 
for CT = 0, P r  = S = d = 1, and y = (0, 1, 5, 10, 15), increasing as indicated by the arrows. 

of the wall, whereas the conditions (2.10) and (2.11) change to 

1 fi = E ( j j  +A+(%)) , 
fi = -9 +Ap(%) , 
fi = B = az/ajj = o 

2 = 0 for j j  + co 
for j j  + -co (3.7) 
a t j j = O ' , ~ < O ,  

where A+(%) are the unknown displacements of the boundary layers in the oxygen 
and fuelstreams due to the interaction, counted positive inward, and E = Aom/AFm. 
The pressure variations induced by such displacements in the corresponding streams 
are (Stewartson 1969) 

and for R + -co , j j  > 0 , 
2 = 1 and for R + -co , j j  < 0 , 

where p = ( U o / U F ) 2  and the principal values of the integrals are understood. These 
are the pressures driving the flow, and must satisfy 

p"+ = p -  for R > O  . (3.9) 

The distributions of pressure and non-dimensional skin friction obtained from the 
numerical solution of (2.5)-(2.9) and (3.7)-(3.9) in the symmetric case 15 = S = 1 
are given in figure 6 for CT = 0, P r  = 1, and several values of y. As can be seen, 
the pressure gradient on the wall changes from favourable to adverse, and the skin 
friction changes from increasing to decreasing, for y about the correct critical value 
( y c  = 1.665 for the present values of the parameters; the pressure should be uniform 
throughout the flow for y = yc ) .  The skin friction remains positive even for the largest 
values of y used in these computations. Further computations with 0 < CT < 1 show 
that the minimum skin friction, always attained at the edge of the wall, decreases 
with increasing CT but does not vanishes until y is well above 10. Thus separation, with 
its important consequences for flame stabilization, seems to be unlikely for the values 
of y typical of the most exothermic reactions found in combustion processes, which 
are in the range 5-7, and these results, limited as they are, provide evidence that 
the solution obtained in the near-wake region on the assumption that no separation 
occurs upstream is applicable under realistic conditions. 
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4. Asymptotic limit of very exothermic reactions 
In this section the structure of the solution of (2.5)-(2.11) in the asymptotic limit 

y + co, corresponding to very exothermic chemical reactions, is discussed. A limitation 
to the validity of this asymptotic analysis arises from the outset, because if separation 
due to the gas expansion occurs in the interaction region before the end of the wall 
for a certain value of y ,  the problem (2.5)-(2.11) is not relevant for y above this value. 
The results at the end of the previous section, however, show that boundary layer 
separation requires very large values of y ,  while the asymptotic results of this section 
provide a good description of the flow even for moderate values of this parameter, in 
the range of practical interest for gas-phase combustion. This fortunate circumstance 
renders the asymptotic results useful despite their formal limitation. Moreover, at least 
one case exists in which symmetry conditions prevent any outward displacement and 
no pressure perturbation appears upstream for any y << Re1/(2u+1). Such conditions 
could be realized by setting up a periodic array of alternating streams of fuel and 
oxygen in adjacent channels formed by an infinite sequence of equal parallel walls 
like the one considered here, simulating an array of injectors. 

Let us begin by describing Goldstein's shear layers for small values of x. Here the 
upper layer is discussed, the other one being analogous, and for convenience a = 1 
is set in (3 .3~)  using the invariance of (3.1) under scale transformations. Since the 
transition from the cold reactant stream to the hot recirculating fluid occurs across 
this layer, the whole range of temperatures, from 1 to O(y),  is present. In addition, in 
the absence of pressure forces the fluid expands freely toward the recirculation region 
on receiving heat, and the high-temperature region of the shear layer is very thick. 
As can be easily verified, eqs. (3.1) have solutions with temperature of order unity 
for q = 0(1) and growing potentially for (-q) >> 1, of the form f l  - b/(-q)'-"" and 
T - ~ ( - q ) ~ ,  for which 

Here a is a free constant, b = 3[(1 + o)m - l]a'/(2Pr), and 

[k2 + 12(4Pr - l)jl1l2 - k 
rn(o,Pr) = , (4.2) 

2 j  

with 

j = (1 + 0)[2 + o - 2Pr ( l+  2o)] and k = 2Pr(5 + 70) - 5 - 40 , 

satisfies 1 < m < 2/(1 + c) for 0 d o < 1 and any P r .  For these solutions the 
temperature reaches values of order y when (-q) becomes of order q i  = yl/m >> 1, and 
then f l  is of order f i  = l/~'/'''-~ << 1 and the scaled velocity is Tf' ,  = 0(l/y2/"-'+" 
1. Thus the flux and the velocity are very small in the region of high temperature, 
despite its thickness. Appropriate variables to describe this region are fh = fl/fi, 

Th = T / y  and q h  = q /q i ,  and the relationship between the temperature and the 
mixture fraction in (2.5) becomes 

(4.3) 
Th = z/z, for O d Z  dZ, ,  

Th = (1 -Z)/(l - Z , )  Z ,  < Z < 1, 

to leading order. Equations (3.1) are left invariant by this rescaling, and must be 

I for 
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solved with the boundary conditions (3.2) and the matching conditions 
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Th - a(-qh)m + . . . for (-qh) --+ 0 , (4.4) 

where further terms of the expansions, involving two other free constants in addition to 
a, can be computed from (3.1). In particular, m = 9/5 and b = 6/5 for o = 0, P r  = 1. 
For o = 1, (4.2) gives m = 1, but the asymptotic expansion for ( - q h )  << 1 contains in 
this case logarithms of ( - q h ) .  The solution of (3.1), (3.2) and (4.4) depends on o, Pr ,  
Zh, and also on Z ,  if the shear layer contains the flame ( z b  > Z J .  This solution is easy 
to obtain numerically using the two-parameter group of transformations that leave 
(3.1) invariant, and determines a (which comes out proportional to z b  if Zb < Z , )  

Another structure of interest arises when one of the reactants is at  rest, typically 
the oxygen, corresponding to a = 0 in the formulation of $2. Then there is no 
possibility of generating appreciable pressure gradients and the flow consists only of 
the Navier-Stokes region about the lower edge of the wall followed by a Goldstein's 
shear layer between the fuel stream and the oxygen mixture. In the limit y --+ 00 the 
asymptotic structure of this layer is similar to the one just discussed if the oxygen 
temperature is high, with this reactant playing then the role of the recirculating 
fluid. However, if both reactants are cold, the structure of the shear layer near 
the oxygen side is different and depends strongly on the Prandtl number. With 
o = 0 and the variables scaled as before, the solution for P r  < 1 is of the form 
f h  - f m  + bexp (-+fm(l - Pr)qh) and Th - aexp (-:f,Prqh), with f m  > 0, for 
q k  -+ co, whereas for P r  > 1 the high temperature region extends only to a finite 
q h  = qh, ,  the solution being of the form fh - (3/2)(m' - l)/[Pr(qhu - q h ) ]  and 
Th - a(qku - ~ h ) ~ ' ,  with m' = 3(4Pr - 1)/[2m(Pr - l)] > 3, for ( q h ,  - q h )  << 1. The 
differences arise because the effect of the heat conduction extends farther than that of 
the viscosity when P r  < 1, preheating the oxygen mixture and decreasing its density 
before it is ingested by the shear layer, which results in a finite ingestion rate from 
this side of the layer. On the other hand, for P r  > 1 the viscosity reaches farther than 
the heat conduction and the ingested fluid is denser, resulting in an infinite ingestion 
rate with the scales of the high-temperature region. 

Coming back to the case a > 0, let us consider the recirculating flow between the 
two shear layers. The ingestion of the layers induces velocities of order y 1 + u - 1 / m ~ 2 / 3 ,  
and the pressure variations are of order y 1 + 2 u - 2 / m ~ 4 / 3  for sufficiently small x.  As was 
mentioned before, these pressure variations are too weak to affect the cold streams 
of the reactants, which therefore do not suffer any lateral displacement, confining 
the growth of the shear layers to the space behind the wall. In these conditions, the 
high-temperature regions of the two shear layers interfere, and Goldstein's self-similar 
solution ceases to be applicable, at a distance of order X b  = q;3 = yP3/" << 1 behind 
the wall, obtained by writing ly - 11 = 1 in the expression for q. This xb is the 
characteristic length of the recirculation region, where the velocity of the fluid is of 
order ub = y'+'-3/m and the pressure variations are of order Pb = y1+2u-6/m. Since such 
pressure variations are still too small to affect the flow in the cold regions of the shear 
layers when o < 1, that flow remains self-similar over the recirculation region and 
beyond. For example, for o = 0 and P r  = 1, xb = y -5 /3 ,  ub = y -2 /3  and P b  = y-7/3,  
while the velocity and the dynamic pressure in the cold parts of the shear layers are 
much larger, of orders y-5/9 and y-''I9. For o = 1, xb = yP3 and the velocities in the 
hot and cold fluids are both of order y-'. Logarithmic plots of the distance from the 
wall to the farthest point of negative velocity as a function of y, obtained from the 



Flow jield of an attached flame 403 

1" 

1 10 

Tt? 
FIGURE 7. Distance to the farthest point with negative velocity as a function of T, = 1 + y for 
P r  = CI = 1 and (a )  o = 0, ( b )  = 1. The longer dashed lines have the slopes (a) -5 /3 ,  ( b )  -3 
predicted by the asymptotic theory. 

numerical solution of (2.5)-(2.11), are given in figure 7 for these two cases, showing 
a rapid approach to the asymptotic behaviour as y increases. 

For x >> xb the region of high temperature is confined by non-compliant streams 
of heavy fluids and cannot keep on growing as in the freely expanding shear layers 
for x << xb. Since heat conduction from the flame continually heats up more fluid, 
its motion in the strip lyl < 1 requires a favourable pressure gradient, whose origin 
is in minute deflections of the outer streams, to be discussed later. In the strip of 
high temperature, the balance of convection, O(u2/yx) ,  viscous force, O(y"u), and 
pressure force, gives u = O(yl+"x) and dp = O(y'+2"x2), and, under the action of the 
gradient of this pressure, the velocity profile of the light fluid rapidly changes from 
the wake-like shape prevailing for x << xb to the jet-like shape depicted in figure 5. 
Eventually the pressure variations become of order unity, for x of order x ,  = 1 / ~ ~ + ' / ~ ,  
and the strip of light fluid begins to thicken, displacing the cold streams sideways. 

The solution in the high-temperature region for xb << x << x, is of the form 

where G(y)  and Z ( y )  satisfy the equations (primes meaning now derivatives with 
respect to y )  

[ T[ (ThG')']' + G (ThG')' - ThG" = -B and ( T [ Z ' ) '  + PrGZ' = 0 , (4.6) 
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with the scaled temperature given 

T G ' = O ,  

T G ' = O ,  
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by (4.3), and the boundary conditions 

Z = O  at y = l ,  

Z = 1  at y = - 1 .  
(4.7) 

The conditions of zero velocity at the boundaries express the matching of this region to 
others where much heavier fluid under the same pressure gradient moves much slower. 
For sufficiently small values of x the strip of light fluid is limited by warm strata of 
Goldstein's shear layer, where the velocity is given by (4.1) and p = [ ~ ( - y ) ~ ] - ' .  Using 
these quantities, the condition pu2 = O(dp) yields ( - y )  = 1- 4/3(4-(1+2a)m) 

for the inner boundary of the region of the shear layer not affected by the pressure 
gradient at a given x. This ( - y )  becomes of order unity for x of order Y - ~ ( ' + ~ ' ' ) / ~ ,  and 
no remnant of Goldstein's self-similar flow is left for larger values of x. 

It turns out that (4.6) and (4.7) determine not only G ( y )  and Z ( y )  but also the 
unknown constant B in the expression for the pressure. This is because any solution 
of (4.6) satisfying the four boundary conditions (4.7) also satisfies the two additional 
conditions 

expressing the conservation of the fluxes of momentum plus pressure and mixture 
fraction in the strip. Conditions (4.8) are obtained by integrating equations (4.6) across 
the strip and using the asymptotic expansions of the solution near the boundaries. 
Near the upper boundary, (1 - y) << 1, these expansions are of the form 

(4.9u) 

if 0 < 1/2, where co and do are known functions of 0 and P r ,  or 

Th = c( 1 - y)llu + ' ' ' J 
if 0 > 1/2, where c and d are free constants, and similar expressions hold for 
(1 +y) << 1. Because of (4.9u), the diffusion fluxes of momentum and mixture fraction 
and the convective flux of momentum are zero across the lateral boundaries. 

Numerical integration of (4.6) was carried out with a shooting method using the 
previous expansions (with two more terms of the expansions (4.9~) providing two 
free constants, much as in (4.4) above). Some results for 0 = 0 and P r  = 1 are 
B = (56.69, 61.11, 74.35, 96.25) for S = (1, 2, 4, 8). 

As was already mentioned in the paragraph above (4.5), the pressure variations 
become of order unity and the strip of hot fluid begins to open up when x becomes 
of order x, = l /yU+'i2.  By then (4.5) gives velocities of order y'/* and the flow in the 
strip is described by equations (2.5)-(2.9) rewritten in terms of the scaled variables 
X = x / x c ,  uh = u / Y ' / ~ ,  V h  = ~ / y ' + ~ ,  Th = T / y  and p h  = yp, of order unity here, with 
the boundary conditions 

(4.10) 
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and 

uh + XG'(y) , Z --+ Z ( y )  given by (4.6) and (4.7), for X + 0 . (4.11) 

Here 6+ are the unknown upper and lower boundaries of the strip. The solution near 
these boundaries is still of the form (4.9a), with (1  - y) replaced by 16+ - yI and the 
coefficients of the expansions depending on X. As before, the fluxes of momentum 
and mixture fraction are conserved, leading to 

which would permit solving the problem if 6+(X) were known. Two further relations 
between &(X) and p(X), closing the problem, arise from the analysis of the cold 
streams. There the effect of the viscosity is negligible and the vorticity remains uniform 
in each stream, except in two thin layers of thickness 0(xEI2) around the strip that 
need not be considered in detail. The velocity profiles are linear and the conditions 
(2.11) of zero displacement of these profiles are satisfied at infinity only if they are 
satisfied everywhere else; i.e. the outward displacement of each streamline in the lower 
stream must equal the increase of the velocity on it, and the outward displacement 
of each streamline in the upper stream must equal a-' times the increase of outward 
velocity on it. In addition, because of the low density, the mass flux across the strip 
is only of order y-lI2, much smaller than the fluxes of the cold streams over regions 
of comparable thickness, in such a way that the boundaries of the strip appear as 
impermeable from the point of view of the outer streams. Bernoulli's theorem on the 
streamlines bounding the region of high temperature above and below then yields 

p+;a2(d+-1 )2=p+; (6 -+1)2  = o  , (4.13) 

which are the two relations sought for. 
For large values of X the upstream thickness of the strip becomes irrelevant and 

the flow takes on a self-similar form corresponding to the asymptotic limit of the 
Hakkinen-Rott solution for y --+ co, in which Y = X2/3fH,(qHR), Z = ZHR(qHR)  and 
p = CX2I3 (Y being the scaled stream function and C < 0), with qHR = y / X ' I 3 ,  
a+ = LI+X'/~ and ad, = -A-  = (-2C)'/2. The functions fHR(qHR) and Z,,(qHR) 
satisfy (3.1), with the term 2C/3 added to the right-hand side of the first of these 
equations, and the boundary conditions 

Thf;, = Z,, - 1 = 0 at qHR = A -  . (4.14) 

Near the upper and lower boundaries the stream function and the temperature are of 
the forms (4.9), with -C taking the place of B and extra factors of 312 multiplying and 
dividing respectively the first and third terms of the first equation (4.9b). The solution 
also determines C. For example C = -2.365 for the symmetric case S = a = 1 with 
c = 0 and P r  = 1. 

To close this section the asymptotic limit S + co, which is of interest because large 
values of S are frequently found in practical cases, is briefly discussed. Unfortunately 
the asymptotic expansion of the solution in this limit is in powers of the logarithm of 
S ,  being therefore of limited applicability, so only the main features of this solution 
will be mentioned here. In the (upper) Goldstein layer for x << xb the thickness 
of the high-temperature region becomes very large below the flame, 0 [(lnS)'/3] for 
c = 0 and P r  = 1, and the distance from the flame to the upper boundary of the 
layer becomes very small, 0 [(lnS)-2/3]. The scaled mass flux is fi = 0 [(lnS)4/3] 

ThfL, = Z,, = 0 at qHR = A +  and 
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above the flame and much smaller, 0 [(ln S)l13], underneath, and, since f l  must be 
continuous, the velocity at the flame is effectively zero from the point of view of the 
region above it. This situation changes somewhat farther downstream, owing to the 
favourable pressure gradient. Thus, in the Hakkinen-Rott solution, the asymptotic 
analysis yields C = - (t In S)-*13, whereas the thickness of the hot region is still 
0 [(lnS)'13] below the flame and 0 [(lnS)-'/6] above the flame, and f(, = 0 [(lnS)4'3] 
at both sides of the flame, which appears as a surface of zero shear from the point of 
view of the region above it. 

5 .  Flame attachment 
5.1. EfSect of the wall thickness 

The analysis of the previous sections was aimed at describing the flow field of an 
existing flame, and was carried out on the assumption that the chemical reaction is 
sufficiently fast for the flame to remain attached under any condition. The results, 
however. shed some light on the issue of conditions for flame attachment and the 
different types of flame lift-off, and will be discussed here in that connection. 

Notice first that the local burning rate at each point of the flame is given by the 
diffusion fluxes of fuel and oxygen, which arrive in stoichiometric proportions from 
opposite sides of the flame. In a real flame, however, finite-rate chemistry effects, not 
accounted for in the present analysis, impose an upper limit on the admissible fluxes, 
because local extinction occurs when the diffusion time becomes shorter than the 
chemical time tch = pF/w,,  where w, is the characteristic value of w in the right-hand 
side of (2.1) evaluated at the adiabatic flame temperature (Lifian 1974). 

Both the reciprocal of the diffusion time and the burning rate are conveniently 
measured by the local value of the scalar dissipation x = ( p / p P r ) ( d Z / d y ) 2  at the 
flame. Maps of the scalar dissipation x with the flame superimposed are given in 
figure 8 for the same sets of parameter values used in figures 2 and 3.  In the present 
non-dimensional variables x tends to infinity at the edges of the wall (see §5.2), 
but away from these points the scalar dissipation on the flame, and therefore the 
possibility of local extinction, depends strongly on the values of the parameters. For 
a = 1, the flame with S = 2, ( a )  and (b),  manages to avoid the region of higher 
dissipation until very near the wall, whereas the flame with S = 8, ( c )  and ( d ) ,  lies in 
the middle of that region (which anyway is shorter than for S = 2). For a = 0.2, the 
flame with S = 2, ( e )  and (f), starts at the lower (fuel) edge, where the dissipation is 
higher, but now lies on top of the ridge of maximum dissipation, and the flame with 
S = 8, ( g )  and (h) ,  starts at the upper (air) edge and immediately bends downward. 

Upon inspection of figures 2 and 8 two possibilities present themselves. 
In cases like (a)  and (b )  (a  = 1, S = 2) or ( g )  and ( h )  ( a  = 0.2, S = 8), and to 

a lesser extent also in cases ( e )  and (f) (a  = 0.2, S = 2), the velocity of the flow 
on the flame is directed toward the wall when the flame enters the region of highest 
dissipation. This region can then be considered as the flame tail rather than the flame 
head, in the sense that if the flame extinguishes here it can still survive downstream, 
where x is smaller. Of course the flow between the extinction point and the wall will 
be different from the one described before, because the temperature on the surface 
2 = 2, will be lower than the adiabatic flame temperature and the reactants will 
diffuse into each other. These changes, however, need not have a strong effect on 
the flame downstream if the distance from the extinction point to the wall is small 
compared with the size of the recirculation region (as seems to be often the case, 
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FIGURE 8. Scalar dissipation and flame for the cases of figure 2. Contour spacing is 0.03 in 
(u) and (c), 0.06 in ( e )  and (g), and 0.2 in (b),  (d), (f)  and (h) .  

judging by the limited extent of the region of high dissipation), because the warm fluid 
still recirculates and the oxygen-fuel mixture, which will burn anyway on reaching 
the flame again, occupies only a small region. When, by changing the parameters, the 
tail of the flame reaches the rear or the lateral boundaries of the region of negative 
velocity, lift-off would occur in the fashion of the Type I11 instability of Takahashi 
& Schmoll (1990). 

On the other hand, in cases like (c) and (d )  ( a  = 1, S = 8) the flow is directed away 
from the wall over the region of the flame more prone to extinction. Now, if the nose 
of the flame (a triple flame; see Liiian 1994) cannot attach in a short region by the 
edge of the wall whose size will be estimated in the following subsection, it will not 
be able to exist downstream (though a diffusion flame could), and combustion will 
not occur at all in the vicinity of the injector. It should be noted here that the mere 
recirculation of hot fluid does not help in anchoring the flame front when the Lewis 
numbers are equal to unity, because the increase of temperature is associated with a 
decrease of the reactant concentrations, in such a way that the enthalpy (thermal plus 
formation) of the recirculating fluid is the same as in the cold streams. It should also 
be noted that, even under these adverse conditions, the region of low velocity around 
the rear stagnation point still provides a favourable environment for a steady triple 
flame to exist, with the two reactants and the combustion products coexisting all 
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over the bubble. This possibility, however, falls outside the framework of the present 
analysis. 

Quite independently of these results, it may also be remarked that inflexional 
velocity profiles are a characteristic feature of very exothermic reactions. Though 
no stability analysis will be carried out here, it seems a reasonable conjecture that 
such profiles may become unstable and lead to high turbulent strain rates that could 
extinguish the flame at some distance downstream of the recirculation region. This 
extinction would be in line with the observations of split flames by Vranos et al. 
(1968) and by others, and would occur in a region whose width bears no relation to 
the width of the fuel jet. 

5.2. Region of flame attachment 

The highest values of x, of order t;' = A,, in dimensional variables, occur in the 
small Navier-Stokes regions of size a,, = Re-'l26 = (pm/p&o)'/2 around the edges 
of the wall, where the velocity of the fluid is of order u,, = (pmA,o/pm)1/2 and the 
heat conduction toward the solid against the stream is important. 

These small regions, which will not be analysed here, are known to play a key role 
in the attachment of flames with finite-rate chemistry when one of the reactants is at 
rest or when the thickness of the wall is comparable to 6,,. Then, a rough criterion 
of flame attachment (Lewis & von Elbe 1961) is that the diffusion time td should be 
of the order of the chemical time tch or larger or, equivalently, that the propagation 
velocity of the corresponding stoichiometric premixed flame, O(,u,/pmtch)1/2, be of 
the order of u,, or larger. If td is shorter than tch the chemical reaction has no time to 
occur in the aforesaid regions, and, as mentioned in the previous subsection, a steady 
triple flame cannot exist in Goldstein's shear layer immediately behind either, because 
the velocity of the flow here is larger than the velocity of propagation of the flame. In 
these conditions the flame lifts off the injector rim or is blown out completely. On the 
other hand, the triple flame always finds an equilibrium position in the Navier-Stokes 
region if t d  is larger than tch, because, owing to the heat losses toward the solid, the 
excess of enthalpy ( H ;  cf. (2.3)) is negative in this region and the temperature of 
the front gets smaller than the adiabatic flame temperature, increasing drastically the 
chemical time. Then the flame front provides a continuous ignition source for the 
diffusion flame downstream. 

The mechanism of flame stabilization seems to be somewhat different when both 
fluids move and the thickness of the separating wall is much larger than a,,, and the 
Navier-Stokes regions then play a less prominent role. This can be seen by analysing 
the flow about the edge. At a distance r > 6,, from the edge the flux carried by 
Goldstein's shear layer is of order pmu,,6,,(r/6,s)2/3 and the entrainment of this layer 
leads to an effectively inviscid flow below, with velocity O [ ~ , , ( r / 6 , , ) - ' / ~ ] ,  and to a 
boundary layer of thickness 6NS(r/6,,)2/3 on the vertical side of the wall. With a flame 
present, the fluid entering this boundary layer comes from regions of high temperature 
downstream and loses heat toward the wall, which results in a deficiency of enthalpy. 
Further, most of this fluid leaves the boundary layer before reaching the Navier- 
Stokes region (the flux in the boundary layer is of order pm~,,~,,(r/6,,)1/3, decreasing 
with r )  and is ingested by the shear layer after crossing the inviscid region in between. 
On a wall of thickness h (> a,,), the maximum thickness attained by this boundary 
layer is of order 6NS(h/6NS)2/3  and the corresponding flux, 0 [pmuNs6,, (h/6,,)'/3], is 
ingested by the shear layer at a distance of order 6,,(h/6,,)'/2 from the solid. This 
defines the length of the attachment region, over which the enthalpy of the flow in 
the shear layer, as well as its velocity, is an increasing function of the distance from 
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the wall. Notice, however, that for a triple flame to exist here its propagation velocity 
has to match that of the flow, which is faster than in the Navier-Stokes region. 

The solutions in the different regions mentioned above can be easily obtained as 
follows. First, in the inviscid recirculation region x1 > 0, IyI d 1, with the streamwise 

distance now scaled with h, the stream function y1 (scaled with [jlFOh2&/pm] ) 
obeys V y1 = -PbdI#1 with the boundary conditions y1 = 0 at x1 = 0; ayl/axl = 

k$(fu,i/xi’3) at y = +1; and y1 + X ; / ~ F ( ~ )  for x1 + 00, where pb, d, fu,  f i ,  and 
F(y) are defined in $3. The solution of this problem determines the slip velocity 
(l/pb)(dyl/dxl),.,=o driving the flow in the boundary layer on the rim of the injector. 
Second, knowing this velocity and the temperature Tb of the fluid outside the boundary 
layer, and assuming that the temperature of the solid is T = 1, the velocity and 
temperature in the boundary layer can be immediately computed for yo < y < 1 and 
for -1 < y < yo. This solution determines the temperature distributions, Tu,~(y2) 
say, for y + rfl, where y2 is the stream function in the boundary layer (scaled with 
~muN,6N,(h/6N,)1/3). Third, the flow in the upper shear layer upstream of the flame 
front (the lower shear layer is similar) obeys the boundary layer equations (2.6)-(2.9) 
without pressure gradient, plus an equation similar to (2.8) for the enthalpy excess H 
defined in (2.3), subject to the boundary conditions 

1/3 

2 

= a(y2 +O), Z = 0, H = 0 for y2 + 00 
& 
a Y 2  

and 

=o,  z = zb, H = Tu(W2) - Tb for y2 --+ -03 , dW2 
dY2 

where y2 = ( y  - h)/ [6NS(h/6NS)1/6] is of order unity in the shear layer for x2 = 

x/ [6NS(h/6NS)1/2] = O(1). The solution of this problem determines the distributions 
of velocity, 2, and H ahead of the flame, where the mixture fractions of the reactants 
and the temperature are Yo = (zb - z ) / &  Y, = (Z/Zb)(Zb - Z,)/(l - Zs), and 
T = 1 + H - y(Y, + Yo - 1). Finally, with these data, a local analysis along the lines 
of LiiiAn (1994) would determine if a triple flame matching the velocity of the fluid 
can exist at some section of the shear layer. 

By way of example, this program was carried out for a = 1 and y + 0, in which 
limit fu  = f l  w -1.258, the recirculating flow and the boundary layers are symmetric, 
and the velocity in the shear layers is self-similar, not being affected by the presence 
of the flame. If the flame front were to sit at a certain position in one of the shear 
layers, the concentration of the rich reactant on the flame and the flame temperature, 
obtained from (2.3) with the condition that the concentration of the lean reactant be 
zero, would be given by the first relations in (2.5) and 

l+yZ/Z,+H for O d Z d Z ,  

respectively. 
The scaled temperature rise (T f  - 1)/( T, - 1) as a function of (x2, y2) is shown in 

figure 9 for S = 4. In this particular case the maximum temperature in each section is 
attained where Z = Z,. The velocity of the nose of the flame front, equal to the burn- 
ing rate of the corresponding planar premixed flame, is a rapidly increasing function 
of Tf  and depends more weakly on the concentration of the rich reactant on the flame 
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U 1 5 4 3 

x2 
FIGURE 9. Increment of temperature at the flame in the region of enthalpy defect for P r  = CI = 1, 
S = 4, and y + 0. Contours plotted are (T f  - l)/(Te - 1) = 0.7, 0.75, 0.8, 0.85, and 0.9, increasing 
from left to right. Dashed: contour Z = Z,.  

(see, e.g., Williams 1985), so the point in the shear layer where this velocity matches 
the velocity of the fluid can be easily determined for any given burning rate law. 

Two other factors that might facilitate the attachment of the flame can be men- 
tioned. Firstly, the heat transferred by the recirculating fluid to the solid may be 
recovered by the oncoming streams of reactants, at a large distance from the end 
of the wall if its conductivity is high, in such a way that the enthalpy is merely 
redistributed and the enthalpy defect of the flow entering the shear layer from the 
recirculation region can be balanced by the enthalpy excess of the flow entering from 
the reactant stream. Secondly, the velocity of the flow in the region of the shear layer 
containing the flame may be appreciable lowered by the effect of the gas expansion 
for sufficiently large values of y (cf. $4). 
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